Here's two teaser images from the page: a 12Z subjective surface analysis, and the 00Z-12Z RAOB evolution at Springfield, MO.


In the wake of these convective systems, a pronounced EML was overspreading the central Plains amidst weak shortwave ridging…well downstream and equatorward of the primary, strong shortwave rotating into the northern Plains. In fact, the central Plains capping thermal ridge underwent amplification during the late morning and early afternoon, as evidenced by 7H temps increasing from 11°C to 13°C at TOP between 12Z and 18Z (see RAOB overlay below, with extreme mid-level lapse rates by 18Z). Also note, despite the presence of the stout cap aloft, diurnal mixing still took a pronounced toll on prefrontal boundary layer moisture...with the richest moist layer becoming decidedly shallow by 18Z. Observed 100 mb ML dewpoints on the 18Z TOP and OUN RAOBs only ranged from 60-64°F… not a particularly positive sign. Still, it appears that persistent south-southwesterly low-level flow ahead of the cold front, coupled with evapotraspirative effects, helped boundary layer moisture quality to recover again through the afternoon (ML dewpoints increasing back to the 64-68°F range) per 00Z RAOB data.
Shortly after 21Z, a combination of frontal lift/convergence, weak height falls aloft, and rapid cooling of the capping layer from the west all resulted in explosive convective initiation along the cold front from the KS Flint Hills up toward Des Moines IA (see visible satellite pic below). More importantly, a prefrontal confluence band—coincident with a narrow low-level thermal ridge with sfc temperatures warming into the low 80s°F—initiated a broken line of storms just east of the I-35 corridor, from Kansas City to Princeton MO. The fact that this latter band of storms was able to initiate ahead of the primary surface boundary was probable confirmation of what afternoon RUC model soundings had suggested: that the very warm capping thermal ridge had held primarily west and south of the MO river; while a very deep/moist boundary layer, with essentially no capping inversion aloft, had evolved amidst the recovering airmass over far northcentral and northeastern MO.
Given westnorthwest-oriented deep layer shear vectors atop the cold front and prefrontal trough, discrete cellular mode actually dominated for the first few hours after initiation. Additionally, stronger flow fields aided the northern storms in moving eastward off the boundaries, while markedly rightward-deviant motions amidst very strong CAPE helped southern storms move off the cold front across portions of KS and eventually northern OK. With a consolidating/strengthening supercell emerging across far northcentral MO and crossing the effective outflow boundary near Milan MO… the stage was set for a cyclic tornadic supercell.
A representative thermodynamic environment for this tornadic supercell was attained by modifying the 00Z DVN RAOB alongside the 00Z TOP RAOB (Kirksville sits about halfway between each). The surface warm front lifted through DVN (~120 miles NE of Kirksville) just prior to the 00Z RAOB launch, which means its sounding--characterized by 2100 J/kg MLCAPE and no MLCINH, despite a saturated boundary layer--was strongly representative of the modifying outflow pool. Meanwhile, just behind the low-level cold front, not only was TOP’s capping inversion aloft (having cooled very markedly the past few hours) similar in magnitude to DVN’s… but the entire thermal profile above the frontal inversion was nearly identical to DVN’s as well. It’s possible that mid-level thermal ridging near Kirksville wasn’t quite as suppressed as at TOP (and yet hadn’t advanced as far NE as DVN)… but this is assumed to be negligible. Below is the modified DVN sounding to represent the Kirksville event. Note moderate-bordering-on-strong instability (MLCAPE = 2455 J/kg); a very deep/moist boundary layer, with remnant EML above 650mb; and strong boundary layer RH (MLLCL < 800 m). Although MLCINH is weak to nil... note that low-level instability is not particularly strong (0-3 km MLCAPE = 41 J/kg), given the nearly saturated, weak-lapse-rate environment below 3 km.
Creating a single, strongly representative sr-hodograph for this event is more difficult given the gradual veering of low-level winds observed in the modified outflow air between 21-00Z. Regardless, the DVN RAOB and Winchester IL profiler were ideally situated to sample the vertical shear within this airmass, and both indicated a very strongly sheared low-level environment for the duration of this event--with very large 0-1 km SRH. Hodographs #1 and #2 below are those observed on the Winchester profiler (N of the effective outflow boundary and ~100 miles ESE of Kirksville) at 21Z and 00Z. Note that veering 0-1 km flow by 00Z is offset by acceleration of the synoptic LLJ to near 50 kt... actually resulting in an increase in SRH, given low-level winds were still strongly backed in a storm-relative sense. The third hodograph, from the raw 00Z DVN RAOB (120 miles NE of Kirksville)--likely launched around 23Z--is a good "medium" between the two... and also produced the largest low-level shear of the three, with 0-1 km SRH at a whopping 460 m2/s2. [Short-term model guidance vastly underestimated the size and pronounced "sickle shape" of these hodographs within the modifying outflow air... with NAM and NAM-KF models forecasting more veered near-sfc winds and a weaker LLJ.] Deep layer shear also appeared favorably strong via these hodographs, with around 50 kt of 0-6 km bulk shear. One final thing to note is that mid- and upper-level storm-relative winds on the three hodographs are pretty modest (20-35 kts)... and when coupled with anomalously rich PWATs (> 1.5"), this probably contributed to HP supercell processes that acted to temper the strength of these tornadoes. [Given that a very rare combination of ~2500 MLCAPE and ~400 0-1 km SRH existed amidst ideal low-level thermodynamics (albeit modest 0-3 km CAPE)... it would seem that the tornadoes from this storm could have been far more violent than they were.]